
Semantic SOA to Promote Integration of Heterogeneous B2B Services∗

Tomas Vitvar, Matthew Moran, Maciej Zaremba,
Armin Haller

Digital Enterprise Research Institute
National University of Ireland, Galway

{firstname.lastname}@deri.org

Paavo Kotinurmi
Helsinki University of Technology

Finland
paavo.kotinurmi@tkk.fi

Abstract

Modeling the semantics of business services and their cor-
responding messages using ontologies enables flexible in-
tegration that is more adaptive to business-driven change.
In this paper we demonstrate our approach building upon
an established Semantic Web Service Framework (WSMX)
to facilitate a conversation between heterogeneous services
that support both the RosettaNet standard and proprietary
information models.

1 Introduction
Inter-enterprise integration is an essential requirement for
today’s successful business. With the aim of overcoming
heterogeneity, various technologies and standards for the
definition of languages, vocabularies and integration pat-
terns are being developed. For example, RosettaNet defines
standardised Partner Interface Processes (PIPs), which in-
clude standard inter-company choreographies (e.g. PIP3A4
Request Purchase Order (PO)), and the structure and se-
mantics of business messages. Although such standards cer-
tainly enable B2B integration, they still suffer from several
drawbacks. All partners must agree to use the same stan-
dard and often the rigid configuration of standards makes
them difficult to adapt to local business needs.

With regard to new emerging trends in enterprise com-
puting, the adoption of Service Oriented Architectures
(SOA) is becoming a defacto standard approach. However,
today’s SOA technologies only provide a partial solution to
interoperability, mainly through unified technological envi-
ronments, while generic and scalable solutions are still in
their infancy. In particular, message level interoperability
is often hardwired in business processes using traditional
XSLT approaches, and process level interoperability is of-
ten maintained through manual configuration of workflows.
In order to address these drawbacks, the extension of SOA
∗This work is supported by the Science Foundation Ireland Grant No.

SFI/02/CE1/I131, and the EU projects Knowledge Web (FP6-507482),
DIP (FP6-507483) and SUPER (FP6-026850).

with semantics offers a scalable integration, more adaptive
to changes in business requirements.

In this paper we focus on how semantic modeling of B2B
standards, allied with a rich semantic SOA execution envi-
ronment, provides the basis for dynamic integration of ser-
vices in a heterogeneous environment. Based on the un-
derlying technologies of Semantic Web services and B2B
standards we describe the integration process within the (1)
service creation phase and (2) service execution phase.

2 Use Case Scenario
Our use case scenario, adopted from the SWS Challenge1,
describes a situation where two companies aim to build
an automated B2B integration. A trading company, called
Moon, uses a Customer Relationship Management system
(CRM) and an Order Management system (OMS) to man-
age its order processing. Moon has signed agreements to
exchange PO messages with a company called Blue using
the RosettaNet standard for PO exchange (PIP3A4). In this
scenario, Blue sends a PIP3A4 PO message, including all
items to be ordered, and expects to receive a PIP3A4 PO
confirmation message. In Moon, various interactions with
the CRM and OMS systems must be performed in order to
process the order, e.g. get the internal ID for the customer
from the CRM system, create the order in the OMS system,
add line items into the order, close the order, and send back
the PO confirmation.

In order for integration to be possible, both Moon and
Blue must comply on three interoperability levels - Com-
munication, Message and Process. We focus on the two
latter assuming both companies communicate via SOAP
over HTTP. For the Message level both partners need to un-
derstand the exchanged messages including both the mes-
sage structure and the semantics of its content. In our sce-
nario, Blue uses PIP3A4 to define the PO request and confir-
mation messages. However, Moon uses a proprietary XML
Schema for its OMS and CRM systems. On the Process

1http://sws-challenge.org/

level, the exchange of messages in the right order is an es-
sential requirement for partner integration. The Blue com-
pany conforms to the PIP3A4 process while Moon follows
its own internal business process. Figure 2 provides an il-
lustration of the architecture reflecting these requirements.

3 Service Creation
The core aspect of the Service Creation Phase is to model
the semantics of services and publish their descriptions. A
number of Semantic Web service ontologies are available
including OWL-S[7], SWSO[1] and WSMO[6]. In each
case, the intent is to define a conceptual model that best
captures the various aspects of Web services. We choose
to use WSMO as our model because of its (1) explicit sup-
port of mediators and (2) ontological separation of service
requester and provider roles. The WSMO Service Model
defines service semantics along with non-functional prop-
erties, functional properties and interfaces (behavior def-
inition) as well as ontologies that define the information
models on which services operate. The service creation
phase involves (1) the WSDL Service Annotation and (2)
the WSMO Service Creation.

 WSMX Middleware

 WSDL Service

WSMO Service

Non-Functional

Functional

Interface

Ontologies
WSMO Ontology

(PIP 3A4, ...)

 WSDL Service

Operations

Messages
XML Schema

(PIP 3A4, ...)

Grounding

(concepts to operations

and messages mapping)

Grounding

(Lifting mapping)

Grounding

(Lowering mapping)

Ontology import or use

Binding

WSDL Service Endpoint

(CRM, OMS, ...)

WSMO Repository

Publish WSMO Service

Figure 1. WSMO and WSDL Services

3.1 WSDL Service Annotation
Blue’s RosettaNet and Moon’s CRM and OMS systems are
already available as WSDL services. In order to enable
semantics for these services and enable grounding from
WSMO to WSDL (see figure 1), they need to be anno-
tated with concepts from WSMO ontologies (created dur-
ing WSMO Service Creation). For this purpose, we use
Semantic Annotations for WSDL (SAWSDL)2. We use the
modelReference extension attribute for annotating each type

2http://www.w3.org/2002/ws/sawsdl/

used in WSDL with the relevant concept from the ontol-
ogy. In addition we use loweringSchemaMapping and lift-
ingSchemaMapping for the definition of transformations
between ontology and Schema types and vice-versa respec-
tively. This information is used when ontological instance
data needs to be transformed to XML (and vice-versa) for
the purpose of invocation using SOAP.

3.2 WSMO Services Creation
In order to create WSMO services, the ontologies must be
created (or reused) together with non-functional, functional
and interface descriptions of services. In addition, a ground-
ing (lowering and lifting schema mappings) must be de-
fined. Semantic Web services are described according to
WSMO Service and WSMO Goal definitions. We describe
a WSMO Goal for the PIP3A4 service and a WSMO Ser-
vice for the CRM/OMS service. Please note that WSMO
Goal and WSMO Service have similar structural definitions
but differ in what they represent. The difference is in the
use of defined capability and interface – a WSMO Goal de-
scribes a capability and an interface requested by the user
whereas a WSMO service describes a capability and an in-
terface provided by a service. WSMO Goals enable goal-
based service invocation which is the basis for advanced
semantic discovery and mediation provided by the WSMX
environment.

3.2.1 Ontologies, Mappings and Grounding
Ontologies describe information models used in semantic
service descriptions. In our scenario, we assume that both
Blue and Moon use independent ontologies i.e. different
ontologies for RosettaNet and CRM/OMS systems3. The
message level interoperability must be thus reached through
mappings between used ontologies which are defined dur-
ing design-time and executed during runtime.¨ ¥

/∗ Lifting rules from XML message to WSML ∗/
instance PurchaseOrderUID memberOf por#purchaseOrder

por#globalPurchaseOrderTypeCode hasValue ”<xsl:value−of select=
”dict:GlobalPurchaseOrderTypeCode”/>”

por#isDropShip hasValue
IsDropShipPo<xsl:for−each select=”po:ProductLineItem”>

por#productLineItem hasValue ProductLineItem<xsl:value−of
select=”position()”/>

</xsl:for−each>
<xsl:for−each select=”core:requestedEvent”>

por#requestedEvent hasValue RequestedEventPo
</xsl:for−each>
<xsl:for−each select=”core:shipTo”>

por#shipTo hasValue ShipToPo
</xsl:for−each>
<xsl:for−each select=”core:totalAmount”>

por#totalAmount hasValue TotalAmountPo
</xsl:for−each>

/∗ message in WSML after transformation ∗/
instance PurchaseOrderUID memberOf por#purchaseOrder

por#globalPurchaseOrderTypeCode hasValue ”Packaged product”

3Another approach would be to use one domain ontology maintained
by Moon however our intention in this scenario is to demonstrate the power
of WSMO mediators in service integration of services

por#isDropShip hasValue IsDropShipPo
por#productLineItem hasValue ProductLineItem1
por#productLineItem hasValue ProductLineItem2
por#requestedEvent hasValue RequestedEventPo
por#shipTo hasValue ShipToPo
por#totalAmount hasValue TotalAmountPo§ ¦

Listing 1. Lifting from XML to WSML

We assume that all ontologies are not available up-front
and must be created by an ontology engineer by means of
the Web Service Modeling Toolkit (WSMT)4. The engineer
takes the existing standards and systems as a basis, namely
RosettaNet PIP 3A4 and CRM/OMS schemas, and creates
PIP3A4 and CRM/OMS ontologies respectively. When
creating ontologies, the engineer describes the information
semantically, i.e. with richer expressivity as opposed to that
of the underlying XML schema. Thus, the engineer cap-
tures the logic of “getting” from the XML schema level
to the semantic level and vice-versa by lifting and lower-
ing rules respectively. These rules are part of transforma-
tion definitions of annotated WSDL description. Listing 1,
shows an example extract of lifting rules and the resulting
WSML instance of a RosettaNet message in XSLT.

3.2.2 Functional Description
The WSMO functional description contains the formal
specification of what the service can provide. This includes
the definition of conditions on service “inputs” and “out-
puts” which must hold before and after the service execu-
tion respectively. The functional description for our back-
end systems contains conditions that the input PO data must
be of a specific type and contain various information such
as customer id, items to be ordered, etc. (this is modeled
as preconditions of the service). In addition, the service de-
fines its output as PO confirmation as well as the fact that
the order has been dispatched. The functional description of
service is used mainly for discovery and may be augmented
by the specification of non-functional properties.

3.2.3 Interfaces and Grounding
Interfaces describe service behavior, modeled in WSMO as
a choreography describing how service functionality can be
consumed by a service requester and, orchestration describ-
ing how the same functionality is aggregated out of other
services. Interfaces in WSMO are described using Abstract
State Machines (ASM) defining rules modeling the interac-
tions performed by the service including grounding defini-
tions to underlying WSDL operations.

Listing 2 shows a fragment of the choreography for
the CRM/OMS service. The choreography is described
from the service point of view thus the rule says that in
order to send SearchCustomerResponse message, the
SearchCustomerRequest message must be available. By

4http://wsmt.sourceforge.net

executing the action of the rule (add(...)), the underlying
operation is invoked according to the grounding definition
of the SearchCustomerResponse concept (the grounding
is determined through its modelReference annotation on a
corresponding WSDL type) which in turn results in receiv-
ing instance data from the Web service.¨ ¥

choreography MoonChoreography
stateSignature

in moon#SearchCustomerRequest
out moon#SearchCustomerResponse

transitionRules MoonChoreographyRules
forall {?request} with (

?request memberOf moon#SearchCustomerRequest
) do

add(# memberOf moon#SearchCustomerResponse)
endForall§ ¦

Listing 2. CRM/OMS Choreography

4 Service Execution
The solution architecture in figure 2 has two categories,
namely Existing systems which include Moon’s back-end
applications (CRM and OMS systems) as well as Blue’s
RosettaNet system available as WSDL services, and the
WSMX integration platform which facilitates the goal-
driven systems integration.

Blue sends a PO request to the WSMX middleware and
expects to receive a PO confirmation. In Moon, the PO
request is automatically broken down to several messages
and interactions: (1) obtaining internal customer ID from
the CRM system, (2) opening the order in OMS system, (3)
placing ordered items to the opened order in the OMS sys-
tem, and (4) sending back order confirmation from the OMS
system. Both Blue and Moon back-end systems have se-
mantically rich descriptions of the information models and
behavior (choreography) of both systems. This, along with
additional mappings between the ontologies of the Blue and
Moon systems, allows both choreographies to “connect” at
run-time and resolve process interoperability issues (me-
diate between both choreographies). As opposed to tradi-
tional centralized solution (when a central workflow would
solve this integration problem), this approach enables the
automatic adaptation when changes to service descriptions
are introduced. In contrast, solutions based on a central
workflow would additionally require changes to the work-
flow type definition. A detailed description of the execution
phase is available in [3].

5 Evaluation and Related Work
Our implementation has been evaluated, by peer-review, ac-
cording to the criteria defined by the SWS Challenge5. The
evaluation criteria targets the adaptivity of the solutions –
solutions should handle introduced changes by modification

5http://sws-challenge.org

RosettaNet
Gateway

Customer

Relationship
Management

Order
Management

System

Process

Mediation

Data Mediation

Choreography

Interface

Capability

description
implementation

Publish

descriptions

W
S

 e
n

d
p

o
in

ts

Blue Company

Choreography

Interface

Capability

WSMO Goal

implementationdescription

Moon Company

CRM/OMS Service

Web Service Web Service

searchCustomer

openOrder

addItems

closeOrder

orderConfirmation

PO Confirmation

PO request

W
S

 e
n

d
p

o
in

ts

WSMX Middleware

Figure 2. B2B Integration Architecture

of declarative descriptions rather than code-changes. Suc-
cess level 0 indicates a minimal satisfiability level, where
messages between middleware and back-end systems are
properly exchanged. Success level 1 is assigned when
changes introduced in the scenario require code changes
and recompilation. Success level 2 indicates that intro-
duced changes did not entail any code modifications and
only declarative parts had to be changed. Finally, success
level 3 is assigned when the system is able to automatically
adapt to the new conditions.

Our solution was evaluated during the SWS Challenge
workshop in Budva, Montenegro6. In the data mediation
scenario we had to make some changes to the code to over-
come limitations of the existing data mediation tool (suc-
cess level 1). For process mediation, we only needed to
change the description of the service interfaces (choreogra-
phies) according to the changes in back-end systems (suc-
cess level 2).

One of the main advantages of the WSMX-based inte-
gration is the strong partner de-coupling. Other solutions
(e.g. WebML [2], Diane [5] or jABC [4]) require a tighter
coupling which results in the limited scalability of these so-
lutions as each new partner requires a new mapping. In
our solution less integration effort is necessary. Data mod-
els expressed in terms of ontologies are built to be shared
among the parties limiting the number of the data model
mappings. Process mediation is performed during the run-
time according to the partners’ choreographies and mes-
sages exchanged between them. On the other hand, WSMO
Choreography modeling is not yet as mature as the business
process modeling offered by other platforms (e.g. WebML
graphic process modeling).

6http://sws-challenge.org/wiki/index.php/Workshop Budva

6 Conclusion
In this paper we described an approach to the integration
of B2B services using Semantic Web services described in
terms of WSMO and executed on a semantically enabled
SOA. Taking a scenario defined by the SWS Challenge,
we explained how modeling of the RosettaNet and propri-
etary messages ontologically allowed us to overcome het-
erogeneities in the data and process models used by the
respective services. In particular, changes introduced to
these models could be handled through modifications to the
model descriptions, rather than to the system source code.
We described how our approach was evaluated by peer-
review and against other participants in the SWS Challenge.

References
[1] S. Battle et al. Semantic Web Services Framework (SWSF)

Overview. Member submission, W3C, 2005.
[2] M. Brambilla, I. Celino, S. Ceri, D. Cerizza, E. D. Valle, and

F. M. Facca. A Software Engineering Approach to Design
and Development of Semantic Web Service Applications. In
ISWC, 2006.

[3] T. Haselwanter, P. Kotinurmi, M. Moran, T. Vitvar, and
M. Zaremba. WSMX: A Semantic Service Oriented Middle-
ware for B2B Integration. In ICSOC, 2006.

[4] C. Kubczak, R. Nagel, T. Margaria, and B. Steffen. The jABC
Approach to Mediation and Choreography. In Semantic Web
Services Challenge, in conjunction with ESWC, 2006.

[5] U. Küster, B. König-Ries, M. Stern, and M. Klein. DIANE
- An Integrated Approach to Automated Service Discovery,
Matchmaking and Composition. In WWW, 2007.

[6] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara,
M. Stollberg, A. Polleres, C. Feier, C. Bussler, and D. Fensel.
Web Service Modeling Ontology. Applied Ontologies,
1(1):77 – 106, 2005.

[7] The OWL Services Coalition. OWL-S: Semantic Markup for
Web Services, v1.1. Member submission, W3C, 2004.

